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In the paper, the element free Galerkin method (EFGM) is applied to calculate two-dimensional unsteady
state heat conduction problems. As is well known, most of the meshless methods have higher computa-
tional cost than that of finite element method (FEM). In order to overcome this shortcoming especially for
transient heat conduction problems, mass lumping procedure is adopted in EFGM, which can decrease
the computational cost evidently. Moreover, this technique which can simplify the solution procedure
makes the essential boundary conditions enforced directly. The results obtained by EFGM combining
mass lumping technique are compared with those obtained by finite element method as well as analyt-
ical solutions, which shows that the solutions of the present method are in good agreement with FEM’s
and analytical solutions.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Many practical heat transfer applications are unsteady (tran-
sient) in nature and in such problems the temperature varies with
respect to time. For example, in a lot of components of industrial
plants such as boilers, refrigeration and air-conditioning equip-
ment, the heat transfer process is transient during the initial stages
of operation. Therefore, the analysis of transient heat conduction is
very important. Although analytical techniques such as variable
separation can be employed to solve transient heat conduction
problems, the solution for practical heat transfer problems by these
methods is difficult. As a result, various numerical models have
been developed for analyzing transient heat conduction problems.
It is noted that numerical methods such as finite element method
(FEM), finite volume method (FVM) and finite difference method
(FDM) have been well established over the past a few decades
and successfully applied to transient heat conduction problems.

Among the methods mentioned above, the spatial domain
where the partial differential governing equations are defined is of-
ten discretized into meshes. Generally speaking, the creation of
suitable meshes is very essential for acquiring accurate results.
However, mesh generation process consumes a lot of time and labor
for some problems especially for discontinuous, high gradient and
3D problems. The root of these difficulties is the use of mesh in
the formulation stage. An attractive option for such problems is
the meshless discretization or a finite point discretization approach,
which has been popular in recent years. Meshless methods only use
a set of nodes scattered within the problem domain as well as a set
of nodes scattered on the boundary. Therefore, compared with FEM,
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meshless methods are well-suited for certain class of problems
such as crack propagation, free surface boundaries, dynamic impact
problems, phase transformation, larger deformations, discontinu-
ous problems, nonlinear thermal analysis and so on. To date, there
exist many meshless methods such as smoothed particle hydrody-
namics (SPH) [1], element free Galerkin (EFG) method [1,2], mesh-
less local Petrov–Galerkin (MLPG) method [2], reproducing kernel
particle method (RKPM) [1], radial point interpolation method
(RPIM) [2] and so on. The more details of these meshless methods
can refer to [2]. As a matter of fact, some researchers have applied
meshless methods to heat transfer problems. Singh et al. applied
EFGM to solve composite heat transfer problems [3,4], unsteady
state heat transfer in semi-infinite solid [5] and unsteady nonlinear
heat transfer problems [6]. Liu [7] solved the radiative transfer
problem by MLPG. Wang et al. [8] developed a meshless numerical
model for analyzing transient heat conduction in non-homoge-
neous functionally graded materials (FGM). Sladek et al. [9,10] used
MLPG to analysis transient heat conduction with continuously
inhomogeneous and anisotropic FGM, too. Zhang and Ouyang [11]
also used the EFGM to analysis the heat transfer due to viscous
dissipation in polymer flow. Wu and Tao [12] applied MLPG to com-
pute steady state heat conduction problems of irregular complex
domain in 2D domain. Zhang et al. [13] applied SPH to simulate
the droplet spreading, splashing and solidification. Among all the
meshless methods, the EFGM has become quite popular due to its
successful applicability in various fields of engineering [1,2]. So in
the paper, we choose EFGM to solve the unsteady state heat
conduction problems.

Although meshless methods have a lot of advantages over FEM,
as a coin has two sides, they also have some disadvantages. For
example, most of the meshless methods (e.g. EFGM) have high
computational cost as compared to FEM, especially for transient
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Nomenclature

aj(x) non-constant coefficients
cp specific heat of the material
G heat generation per unit volume
h heat transfer coefficient
H the height of the plate
m number of terms in the basis
N number of nodes in the domain of influence
nx, ny outward normal to the surface
N(x) shape functions
P(x) complete polynomial basis
q boundary heat flux

T temperature of the material
Ta atmospheric temperature
Tside the temperature at the sides except top side
Ttop the temperature at the top side
uh moving least square approximation
w(x-xI) weight function
W the width of the plate
xQ Gauss quadrature point
q density of the material
Dt time step
rij Kronecker delta function
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problems. As a matter of fact, if transient problems are solved in an
explicit mode, all the transient terms usually lead to mass matrices
after spatial and temporal discretizations. Moreover, the band
width of these mass matrices obtained by EFGM is usually larger
than that obtained by FEM. Therefore, more computational time
is needed to solve linear equations. The main object of the paper
is to reduce the computational cost of EFGM as much as possible.
In FEM, mass lumping procedure is quite prevalent, which can sim-
plify the solution procedure and save much computational time.
Thus, we introduce the mass lumping technique to the meshless
methods (e.g. EFGM). So far the utilization of this technique com-
bining EFGM has not found in literatures.

The paper is organized into following sections. In Section 2, the
details of the EFGM are presented. Section 3 describes the temporal
and spatial discretization for the transient equations and matrix
lumping technique in detail. The results of numerical example
and discussion are presented in Section 4. Finally, Section 5 draws
some conclusions on the presented analysis.

2. Review of element free Galerkin method

In the EFGM, the field variable u(x, t) is approximated by mov-
ing least squares (MLS) approximation which was initially intro-
duced for data fitting and surface construction in 1981 [1]. The
MLS approximation uh(x, t) of u(x, t) can be defined by [1,2]

uhðx; tÞ ¼
Xm

j¼1

pjðxÞajðx; tÞ ¼ PTðxÞaðx; tÞ ð1Þ

where P(x) is a complete polynomial basis of order m and a(x, t) is
coefficient (to be determined) which is the function of the space
coordinate x and time t. For the sake of simplicity, linear basis is
chosen in the paper.

The unknown coefficient a(x, t) in Eq. (1) is obtained at any
point x by minimizing the following weighted, discrete error norm

J ¼
Xn

i¼1

wðx� xIÞ uIðtÞ � PTðxIÞaðx; tÞ
h i2

ð2Þ

where w(x � xI) is a weight function of compact support (often
called the domain of influence of node I) and n is the number of
nodes whose support includes point x. uI(t) is the parameter associ-
ated with node I of the approximation field. The choice of the
weight function is more or less arbitrary in practice, and spline
function [2] is chosen as weight function in the paper.

Minimization of Eq. (2) with respect to a(x, t) then yields to the
following system of linear equations for the coefficient a(x, t):

AðxÞaðxÞ ¼ BðxÞuðtÞ ð3Þ

where A(x) and B(x) can easily be obtained from Eq. (1), and u(t) is
the vector of nodal unknowns. If A is invertible, the coefficient
a(x, t) can be expressed as
aðx; tÞ ¼ A�1ðxÞBðxÞuðtÞ ð4Þ

Substituting the above equation back into Eq. (1) leads to

uhðx; tÞ ¼ PTðxÞA�1ðxÞBðxÞuðtÞ ¼ NTðx; tÞuðtÞ ð5Þ

where N(x, t) is the vector of MLS shape functions.
The MLS approximation is obtained by a special least squares

method, thus the functions obtained by the MLS approximation
are smooth curve and they do not pass through the nodal values.
Therefore, the MLS shape functions do not, in general, satisfy the
Kronecker delta condition at each node, i.e. NIðxJÞ–dIJ . Conse-
quently, the imposition of essential boundary conditions is more
complicated than that for the standard FEM. Several methods have
been proposed, including Lagrange multipliers [1,2], penalty meth-
ods [2], coupled FEM method [1], direct collocation method [1,2]
and so on. In the paper, direct collocation method is used to en-
force the essential boundary conditions.

3. Model and algorithm

The transient heat conduction equation (2D in this paper) for a
stationary medium is given by [14]

qcp
oT
ot
¼ o

ox
kx

oT
ox

� �
þ o

oy
ky

oT
oy

� �
þ G ð6Þ

where q is the density of material, cp is the specific heat, kx and ky

are the thermal conductivities in the x- and y-directions, respec-
tively, G is the heat generation per unit volume. The initial condi-
tions and boundary conditions for this type of problem are:

Tðx; y; 0Þ ¼ T0 in X ð7Þ
T ¼ Tb on Cb ð8Þ

kx
oT
ox

nx þ ky
oT
oy

ny þ qþ hðT � TaÞ ¼ 0 on Cq ð9Þ

where Cb [ Cq ¼ C and Cb \ Cq ¼ 0 represent the whole boundary.
In the above equations, nx and ny are direction cosines, h is the heat
transfer coefficient, Ta is the atmospheric temperature and q is the
boundary heat flux.

Before dealing with the temporal discretization, we use the
standard Galerkin method for the transient equations. The temper-
ature is discretized over space as follows:

Tðx; y; tÞ ¼
Xn

i¼1

Niðx; yÞTiðtÞ ð10Þ

where Ni are the shape functions and Ti(t) are the time-dependent
nodal temperatures.

The Galerkin representation of Eq. (6) isZ
X

Ni
o

ox
kx

oT
ox

� �
þ o

oy
ky

oT
oy

� �
þ G� qcp

oT
ot

� �
dX ¼ 0 ð11Þ
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Employing integration by parts on the first two terms of Eq. (11), we
get

�
Z

X
kx

oNi

ox
oT
ox
þ ky

oNi

oy
oT
oy
� NiGþ Niqcp

oT
ot

� �
dX

þ
Z

Cq

Ni kx
oT
ox

nx þ ky
oT
oy

ny

� �
dCq ¼ 0 ð12Þ

Substituting Eqs. (9) and (10) into Eq. (12), we can obtain following
equation:

�
Z

X
kx

oNi

ox
oNj

ox
þ ky

oNi

oy
oNj

oy

� �
dXTjðtÞ �

Z
X
qcpNiNj dX

oTj

ot

þ
Z

X
NiGdX�

Z
Cq

NiqdCq �
Z

Cq

NihðT � TaÞdCq ¼ 0 ð13Þ

where i and j represent the nodes. Eq. (13) can be written in a more
convenient form as:

M
oT
ot
þ KT ¼ f ð14Þ

where

Mij ¼
Z

X
qcpNiNj dX ð15Þ

Kij ¼
Z

X
kx

oNi

ox
oNj

ox
þ ky

oNi

oy
oNj

oy

� �
dXþ

Z
C

hNiNj dC ð16Þ

fi ¼
Z

X
NiGdX�

Z
Cq

NiqdCq þ
Z

Cq

NihTa dCq ð17Þ

If kx and ky are independent of temperature, Eq. (14) is linear in
form, or Eq. (14) is non-linear and requires an iterative solution.

As can be seen from the semi-discrete form of Eq. (14), the dif-
ferential operator involving the time-dependent term still remains
to be discretized. In this paper, we use forward different technique
for the time approximation, and then Eq. (14) can be written as:

M
Tnþ1 � Tn

Dt
¼ KTn þ f n ð18Þ

As mentioned above, the computational cost of EFGM is usually
higher than that of FEM, especially for transient problems. Beside
calculation of shape functions and its derivatives, the linear equa-
tions need to be solved in each time step, which requires more com-
putational time than that of FEM. In order to avoid solving linear
equations, we can use the mass lumping technique, that is, these
mass matrices M can be ‘‘lumped” by summing up the rows and
placing on the diagonals as in FEM, thus we obtain a matrix free for-
mulation. This is an approximation, but a worthwhile and time-sav-
ing approximation. Mass lumping will eliminate the need for the
matrix solution procedure necessary for consistent matrices. More-
over, the essential boundary conditions can be enforced straightfor-
wardly as in FEM. As a matter of fact, mass lumping technique is
used in FEM popularly, but not used in meshless method so far.

In order to evaluate the integrals in Eqs. (15)–(17), the problem
domain is discretized into a set of background cells, and then the
Gauss quadrature scheme is employed to perform the integrations
numerically over these cells. In the paper, 3 � 3 Gauss points are
used in each cell for numerical quadratures. In order to save com-
putational time as much as possible, we can calculate shape func-
tions and its derivatives only one time at the preprocessing stage if
the nodes are unchanged during the analysis. Therefore, if the
nodes are fixed during the calculation, the flowchart of EFGM for
the transient heat transfer problems can be summarized as

1. Preprocessing stage:
� Define EFGM nodes and their initial position and temperature.
� Compute shape functions and their derivatives:
– Loop over cells of the domain

* Loop over quadrature points xQ in cell C
(a). if quadrature point xQ is outside the physical

domain, go to (d);
(b). check all nodes in cell and surrounding cells to

determine n nodes xI, I = 1 to n such that xQ is in
their domain of influence;

(c). for each of the n neighbor nodes, compute
NI(xQ) and its spatial derivatives;

(d). continue;

* End quadrature point loop
– End cell loop
� Compute mass matrix M and then lump mass matrix, invert
and store it in an array
2. Computational stage:
� Loop over time steps
– Compute matrix K and f at each quadrature point
– Impose essential boundary directly
– Update T

� End loop over until reach the steady state or the given time
steps
4. Results of numerical example and discussion

In this section, EFGM is applied to compute two-dimensional
unsteady state heat conduction problem. Considering the square
plate of unit size, three sides of the plate are maintained at the con-
stant temperature 100 �C, and the upper side is subjected to 500 �C.
The thermal conductivity of the material is constant and equal to
10 W/m �C [14].

The analytical solution to this problem for steady state is given
by [15]

Tðx; yÞ ¼ ðTtop � TsideÞ
2
p
X1
n¼1

ð�1Þn þ 1
n

sin
npx
W

� � sinh npy
W

� 	
sinh npH

W

� 	þ Tside

ð19Þ

where W is the width, H is the height of the plate, Ttop is the temper-
ature at the top side and Tside is the temperature at the other sides of
the plate. Therefore, T(0.5, 0.5) = 200 �C.

Two different nodal distributions shown in Fig. 1(a) and (b) are
used for the square plate problem to examine the efficiency of the
present method. Additionally, Fig. 1(c) presents the finite element
mesh. In the paper, linear triangular elements are used for FEM. In
order to illustrate the computational accuracy of the present meth-
od, the results are compared between EFGM and FEM.

Figs. 2 and 3 show the temperature contours at t = 0.01 s and
t = 0.5 s, respectively. In these figures, (a), (b) and (c) represent
EFGM solutions for 1681 regularly distributed nodes, EFGM solu-
tions for 2362 irregularly distributed nodes and FEM solutions,
respectively. It can be noted that the results obtained by EFGM
are identical with FEM solutions. Consequently, the mass lumping
technique can be applied to EFGM. Moreover, the temperature
reaches steady state about t = 0.5 s and a steady value at the centre
of plate is (a) 199.98 �C, (b) 200.05 �C, and (c) 200.30 �C, respec-
tively. We have known that under the steady state the analytical
solution of that is 200 �C. Thus it indicates that EFGM coupling
with mass lumping technique has high computational accuracy,
especially for regular nodal distribution in this problem.

Fig. 4 presents the comparison of the temperature variation at
the centre point (0.5, 0.5) of plate with respect to time, which is be-
tween the solutions of EFGM for two different nodal distributions,



Fig. 1. Different nodal distributions used for EFGM and finite element mesh.

Fig. 2. Temperature distribution at t = 0.01 s for EFGM (a and b) and FEM (c).

Fig. 3. Temperature distribution at t = 0.5 s for EFGM (a and b) and FEM (c).
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namely regular and irregular nodal distributions, as well as be-
tween the solutions of EFGM for regular nodal distributions and
those of FEM, respectively. It can be seen that these results are iden-
tical. It should be noted that the temperature increases rapidly and
reaches a steady value about 0.4 s and thereafter remains constant.

To further demonstrate the advantages of EFGM combining
mass lumping technique over the EFGM with consistence mass
matrix in efficiency, all the computational parameters are identical.
In the paper the time step Dt = 0.0001 s and the dimension of the
influence domain for each node is assumed to be 1.3d, where
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxÞ2 þ ðDyÞ2

q
, Dx and Dy are nodal spacings in the x- and

y-directions. Table 1 gives the comparisons of CPU times spent
for running the example till t = 1.0 s by using EFGM and FEM
with/without mass lumping technique. It can be seen that the pres-
ent method accelerates computational efficiency evidently.



Fig. 4. Comparison of temperature distribution between EFGM solutions and FEM solution at the centre of a square domain with respect to time.

Table 1
Comparison of CPU time obtained by EFGM and FEM with/without mass lumping
technique.

Techniques CPU time (s)

EFGM with mass lumping 177.17
EFGM without mass lumping 1143.42
FEM with mass lumping 24.63
FEM without mass lumping 436.33
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5. Conclusions

In the paper, EFGM has been successfully applied to the tran-
sient heat transfer problems. In order to reduce the computational
cost of EFGM and simplify the solution procedure, the mass lump-
ing technique is used. The numerical results obtained by the pres-
ent method are compared with those obtained by FEM as well as
analytical solutions, which indicates that: (1) The EFGM combining
mass lumping technique provides a very efficient, fast and accurate
method to solve transient heat transfer problems. (2) In general,
the MLS shape functions do not satisfy the Kronecker delta condi-
tion, thus EFGM poses some difficulties in the imposition of essen-
tial boundary conditions. However, in the present method, once
the mass matrix has been lumped, the essential boundary condi-
tion can be easily enforced as same as FEM’s.
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